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Guiding Dynamics
« So far, we have discussed convergence to some equilibrium.

- This is usually the best you can hope for with natural
dynamics, esp in time poly in the size of the game.

«  What about games with a big gap between their best
and worst equilibria? (E.g., large PoA, small PoS)

If players are currently in a bad equilibrium, A
can we "nudge” behavior towards the v

good ones? \g

&



¥ Good equilibria, Bad equilibria &)
Many games have both good and bad equilibria.

In some places, everyone throws their trash on the street.
In some, everyone puts their trash in the trash can.

In some places, everyone drives their own car. In some,
everybody uses and pays for good public transit.




¥ Good equilibria, Bad equilibria &)

In fair cost-sharing, there exist networks where the
worst equilibrium is a factor n more costly than the
best equilibrium.

S Suppose players enter in one at a time
and take the best path given the
costs so far. Are we guaranteed a
n 1 good equilibrium then?



¥ Good equilibria, Bad equilibria &)

No. Think of the “cars and shared transit” game, where
the shared transit has cost 2:

Shared
transit




Nudging from bad to good

"Public service advertising model:

0. n players begin in some arbitrary configuration.

1. Authority launches public-service advertising campaign,
proposing joint action s”.
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Nudging from bad to good

"Public service advertising model™:

0. n players begin in some arbitrary configuration.

1.

Authority launches public-service advertising campaign,
proposing joint action s™. Each player i pays attention and
follows with probability a. Call these the receptive players

. Remaining (non-receptive) players fall to some arbitrary

equilibrium for themselves, given play of receptive players.

. Campaign wears off. Entire set of players follows best-

response dynamics from then on.

Note: if a=1, then it's obvious. Key issue: what if o < 1?




Fair Cost Sharing

Cost sharing:  (PoS = log(n), PoA = n)

311 1

:
Lf only an o probability of players following the advice,

then we get expected cost within O(log(n)/a) of OPT.
Proof:

- Advertiser proposes OPT (any apx also works)

- In any NE for non-receptive players, any such player i
can't improve by switching to his path P,.°°T in OPT.

cost;(s) < > ce/(1 4 neR)

OPT
ot P

Hreceptives on
edge e (any extras
. only helps)

~

)




Fair Cost Sharing

Cost sharing:  (PoS = log(n), PoA = n)
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;
Lf only an o probability of players following the advice,
then we get expected cost within O(log(n)/a) of OPT.

Proof:

- Advertiser proposes OPT (any apx also works)

- In any NE for non-receptive players, any such player i
can't improve by switching to his path P,.°°T in OPT.

cost;(s) < > ce/(1 4 neR)

OPT
eGPZ-

- Calculate total cost of these guaranteed options. costz(s)

< Z Z Ce/(l'l'neR) <Z?’L Ce/(l_l_ne,R)

¢ R eEPOPT

#non-receptives on edge e
Rearrange sum 3 - OPT }




Fair Cost Sharing

Cost sharing:  (PoS = log(n), PoA = n)

.'.
Lf only an o probability of players following the advice,
then we get expected cost within O(log(n)/a) of OPT.

For receptives, denominator
Proof: A }

only n, r, giving factor of 2.

- Add in cost of receptives: cost(s) < Z 2N opr * Ce/ (1 + ng )
: . : 1l _pn( L
- Finally, use: if X ~ Bin(m,p) then £ || = 0 (=)
- Take expectation: get O(OPT/a). (End of phase 2)
- Calculate total cost of these guamn‘reed options. costz(s)

< Z Z Ce/(l'l'neR) <Z?’L Ce/(l_l_ne,R)

1R BEPOPT
Rearrange sum.. #non-receptives on edge e
g in OPT




Fair Cost Sharing

Cost sharing:  (PoS = log(n), PoA = n)

511

.'.
Lf only an o probability of players following the advice,
then we get expected cost within O(log(n)/a) of OPT.

For receptives, denominator
Proof: : J

only n, r, giving factor of 2.

- Add in cost of receptives: cost(s) < 2 2N 0pr * Ce/(1 + Ner)
e

- Finally, use: if X ~ Bin(m,p) then E |-~| = 0 (-%).

p-m

- Take expectation: get O(OPT/a). (End of phase 2)

- Finally, in last phase, potential argument shows behavior
cannot get worse by more than an additional log(n) factor.

(End of phase 3)



Cost Sharing, Extension

Cost sharing: + linear delays: fe(ne) = ce/ne + Le - ne

- Problem: can't argue as if remaining NR players
didn't exist since they add to delays

Proof Idea:

- Define shadow game: pure affine latency functions (linear plus
constant). Offset defined by equilibrium at end of phase 2.

fe(ne) — Ce/(1 + ﬁe) + 4 1,

- This has good PoA. m at end of phase 2 ]

Theorem 18.23 (The price of anarchy in affine atomic instances) [f (G, r, c¢)
Is an atomic instance with affine cost functions, then the price of anarchy of
(G, r.c)isat most (3 ++/5)/2 ~ 2.618.
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constant). Offset defined by equilibrium at end of phase 2.

fe(ne) — Ce/(1 + ﬁe) + 4 1,

- This has good PoA. m at end of phase 2 ]

- State at end of phase 2 is equilibrium for R for this game too.

- Why: costs in state are lower, and costs for deviations same.
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Cost sharing: + linear delays: fe(ne) = ce/ne + Le - ne

- Problem: can't argue as if remaining NR players
didn't exist since they add to delays

Proof Idea:

- Define shadow game: pure affine latency functions (linear plus
constant). Offset defined by equilibrium at end of phase 2.

fe(ne) — Ce/(1 + ﬁe) + 4 1,

- This has good PoA. m at end of phase 2 ]

- State at end of phase 2 is equilibrium for R for this game too.

- Also cost(f) = cost(f)/2. So, cost(f) < 2cost(f) = 0(OPT).



Cost Sharing, Extension

Cost sharing: +

Finally: E|OPT

inear delays: fe(ne) = ce/ne + e - ne

= 0(OPT /). [Because one option for OPT is to

use the same paths as OPT, and for each edge e, its expected cost in
shadow game is 0(1/a) times its cost in real game under OPT]

- Define shadow game: pure affine latency functions (linear plus

constant). Offset defined by equilibrium at end of phase 2.
fe(ne) =c./(1+7,) + 4,1,

- This has good PoA.

- State at end of phase 2 is equilibrium for R for this game too.

m at end of phase 2 ]

- Also cost(f) = cost(f)/2. So, cost(f) < 2cost(f) = 0(OPT).



Cost Sharing, Extension

Cost sharing: + linear delays: fe(ne) = ce/ne + Le - ne

Finally: E|OPT

= 0(OPT /). [Because one option for OPT is to

use the same paths as OPT, and for each edge e, its expected cost in
shadow game is 0(1/a) times its cost in real game under OPT]

And then lose O(logn) in Step 3 as before, since the potential
function for cost sharing with linear delays satisfies

%cost(s) < ®(s) < cost(s) - log(n).



Party affiliation games

* Given graph G, each edge labeled + or -. .
* Vertices have two actions: RED or BLUE. + -
costi(s) = > L) T > I(s=s)) +

(ij)e+ (iJj)e—

Pay 1 for each + edge with endpoint of different
color, and each - edge with endpoint of same color.

__
\L +1 to keep ratios }
finite

* All + edges is consensus game. [OPT is all red or all blue]

cost(s) = ) costi(s) +1

* Special cases:

* All - edges is cut-game. [OPT is a max cut]



Party affiliation games

Party Affiliation: (PoS =1, PoA =0(n%))
- Threshold behavior: for a > 3, can get ratio O(1), but for

a < 7, ratio stays Q(n?). (assume degrees w(log n)).

Lower bound:
- Consensus game, two cliques, with relatively sparse between them.
Players "locked" into place.

Degree (1 - 2a)n/4 across cut }

o © @ o © Meters,
liters,
@ & & @ @ & & @ kilograms

If advertise “blue” then each red still has = (1 — a)n/2 red nbrs compared to
~ an/2 + deg blue neighbors. So stays red so long as deg < (1 — 2a)n/2.



Party affiliation games

Party Affiliation: (PoS =1, PoA =0(n%))
- Threshold behavior: for a > 3, can get ratio O(1), but for

a < 7, ratio stays Q(n?). (assume degrees w(log n)).

Upper bound:

- Split nodes into those incurring low-cost vs those incurring
high-cost under OPT.

- Show that low-cost-in-OPT will switch to behavior in OPT.
For high-cost-in-OPT, don’t care.

- Cost only improves in final best-response process.
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